Poly(phthalaldehyde)-based electron beam resists, University of Tübingen

A direct positive patterning of PPA layers is possible by electron bombardment. Similar to the irradiation of normally used e-beam resists like e.g. CSAR 62 or PMMA, the electron beam causes a fragmentation of the polymer chains.

Phoenix 81 – Storage conditions and dispatch

In the final stage of the Eurostar PPA-Litho project which was aimed to develop the resist Phoenix, we achieved to generate far more stable PPA polymers by optimizing the synthesis procedure. Pure polyphthalaldehydes which were subjected to a “stress test” for 14 days at 37 °C showed no decomposition. These resists can thus be shipped without cooling; this however only applies to pure PPA polymers.

2L-Lift-off system AR-P 617 – AR-P 8100

Anisole PPA solutions can be coated on PMMAcoMA 33 (AR-P 617). The single layers add up in this case; no mixing of layers occurs, which is a decisive prerequisite to realise defined 2- or also 3-layer systems.

Poly(phthalaldehyde)-based electron beam resists

A direct positive patterning of PPA layers is possible by electron bombardment. Similar to the irradiation of normally used e-beam resists like e.g. CSAR 62 or PMMA, the electron beam causes a fragmentation of the polymer chains.