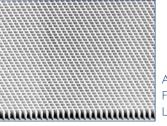

Negative E-Beam Resists AR-N 7500

AR-N 7500 e-beam resists for mix & match


High-resolution e-beam resists for the production of integrated circuits

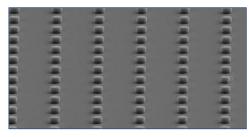
Characterisation

- e-beam, deep UV, i-line, g-line
- intermediate sensitivity
- mix & match-processes between e-beam and UV exposure 310 - 450 nm, positive or negative depending on the exposure wavelength chosen
- high resolution, process-stable (no CAR)
- plasma etching resistant, temp.-stable up to 120 °C
- novolac, naphthoquin. diazide, organic crosslink.a.
- safer solvent PGMEA

Structure resolution

AR-N 7500.18 Film thickness 400 nm Lattice with 70 nm lines

Process parameters


Substrate	Si 4" waver
Soft bake	85 °C, 90 s, hot plate
Exposure	ZBA 21, 30 kV
Development	AR 300-47, 4 : 1, 60 s, 22 °C

Properties I		
Parameter / AR-N	7500.18	7500.08
Solids content (%)	18	8
Viscosity 25 °C (mPas)	4	2
Film thickness/4000 rpm (µm)	0.4	0.1
Resolution best value (nm)	40	
Contrast	5	
Flash point (°C)	42	
Storage 6 month (°C)	10-18	

Properties II

Glass trans. temperature (°C)	108	
Dielectric constant	3.1	
Cauchy coefficients	N ₀	1.614
	N ₁	157.1
	N ₂	0
Plasma etching rates (nm/min)	Ar-sputtering	8
(5 Pa, 240-250 V Bias)	O ₂	170
	CF ₄	40
	80 CF ₄	90
	+ 16 O ₂	

Resist structures

AR-N 7500.18, rows of cylinders with a diameter of 500 nm

Process chemicals

Adhesion promoter	AR 300-80 new
Developer	AR 300-46, 300-47
Thinner	AR 300-12
Remover	AR 300-76, AR 300-73

Innovation Creativity Customer-specific solutions

Negative E-Beam Resists AR-N 7500

Process conditions This diagram shows exemplary process steps for AR-N 7500 resists. All specifications are guideline values which have to be adapted to own specific conditions. For further information on processing, 🖙 "Detailed instructions for optimum processing of e-beam resists". For recommendations on waste water treatment and general safety instructions, @ "General product information on Allresist e-beam resists". AR-N 7500.18 Coating 4000 rpm, 60 s, 0.4 µm Soft bake ($\pm 1 \,^{\circ}$ C) 85 °C, 2 min hot plate or 85 °C 30 min convection oven ZBA 21, 20 kV E-beam exposure Exposure dose (E_0): 180 μ C/cm² AR 300-47, 4:1 Development (21-23 °C ± 0,5 °C) puddle 60 s Rinse DI-H₂O, 30 s Post-bake 120 °C, 1 min hot plate or 120 °C, 25 min convection oven (optional) for enhanced plasma etch resistance Customer-specific Generation of semiconductor properties technologies AR 300-76 or O₂ plasma ashing Removal optimal Developments recommendations suitable AR 300-26 AR 300-35 AR 300-47 Developer AR-N 7500.18; .08 1:4:1:7 4:1:1:1 4:1

Processing instructions

These resists are predestined for e-beam exposure, but also suitable for UV exposure. Mix & match processes are possible, if both exposure methods are carefully coordinated. During e-beam exposure, the resist works in a negative mode. If these resists are exposed to UV, they also work in a negative mode if image-wise exposure is performed at 310 to 365 nm, followed by flood exposure at > 365 nm (optimum g-line). The exposure dose is in this case roughly 100 mJ/cm² (i-line) for a film thickness of 400 nm. With an additional tempering step (85 °C, 2 min hot plate) after image-wise exposure, the sensitivity can be slightly increased. A positive image is obtained after image-wise UV exposure at 365 - 450 nm without subsequent flood exposure. The developer dilution should be adjusted with DI water in such a way that the development time is in a range of 30 and 120 s at 21 - 23 °C.

As of May 2019