Alkali-stable Positive Resist SX AR-P 5900/4 # Positive photoresist, also applicable as protective coating Experimental sample/custom-made product #### Characterisation - broadband-UV, i-line, g-line - stable in alkaline media, layer withstands 10 minutes in 2 n sodium hydroxide - very good adhesion, also applicable as protective coating - plasma etching stable - combination of novolac and naphthoquinone diazide with alkali-resistant components - safer solvent PGMFA ## Properties I | Parameter / SX AR-P | 5900/4 | |------------------------------|---------| | Solids content (%) | 26 | | Viscosity 25 °C (mPas) | 24 | | Film thickness/4000 rpm (µm) | 1.4 | | Resolution (µm) | 2.0 | | Contrast | 3.0 | | Flash point (°C) | 42 | | Lagerung 6 Monate (°C) | 10 - 18 | #### Spin curve ## Properties II | Glass transition temperature (°C) | 108 | 3 | |-----------------------------------|---------------------|-------| | Dielectric constant | 3.1 | | | Cauchy coefficients | N ₀ | 1.639 | | | N_1 | 164.7 | | | N ₂ | 0 | | Plasma etching rates (nm/min) | Ar-sputtering | 7 | | (5 Pa. 240-250 V Bias) | 02 | 165 | | | CF ₄ | 31 | | | 80 CF ₄ | 83 | | | + 16 O ₂ | | #### Resist structures SX AR-P 5900/4 Resist structure after treatment with 2 n NaOH ### Process parameters | Substrate | Si 4" wafer | |-------------|---------------------------| | Soft bake | 100 °C, 3 min, hot plate | | Exposure | g-line stepper (NA: 0.56) | | Development | 2 n NaOH, 1 min, 22 °C | #### Process chemicals | Adhesion promoter | AR 300-80 new | |-------------------|---------------| | Developer | 2 n NaOH | | Thinner | AR 300-12 | | Remover | AR 300-76 | # Customer-specific solutions # Alkali-stable Positive Resist SX AR-P 5900/4 ## **Process conditions** This diagram shows exemplary process steps for SX AR-P 5900/4 resists. All specifications are guideline values which have to be adapted to own specific conditions. For further information on processing \circ "Detailed instructions for optimum processing of photoresists". For recommendations on waste water treatment and general safety instructions \circ "General product information on Allresist photoresists". Coating with AR-P 5900/4 4000 rpm, 60 s 1.4 μm Soft bake (± 1 °C) 100 °C, 3 min hot plate or 95 °C, 40 min convection oven UV exposure Broadband UV, 365 nm, 405 nm, 436 nm Exposure dose (E_0 , BB-UV stepper): $> 1000 \text{ mJ/cm}^2$ Development (21-23 $^{\circ}$ C ± 0.5 $^{\circ}$ C) puddle 2 n NaOH 1 min DI- H_2O , 30 s Post-bake (optional) Rinse Only required if used as protective coating without structuring (max. at 130 °C) Customer-specific technologies Generation of e.g. semi-conductor properties or etching with alkaline media Removal AR 300-76 or O₂ plasma ashing #### Processing instructions and supplementary information Instead of developer AR 300-26 (undiluted), also 1-2 n sodium hydroxide may be used. To prevent a washing off of structures during the rigid development process, the use of adhesion promoter AR 300-80 is recommended. Due to the high alkali-stability, long exposure times must be scheduled. Resist structures should not be tempered above $105 \,^{\circ}\text{C}$ to prevent the converging of structures. If this resist is only used as protective coating, a post-bake at $130 \,^{\circ}\text{C}$ is recommended to improve alkaline stability. This resist formulation is currently successfully processed by customers, may however also be modified according to new customer's requirements.