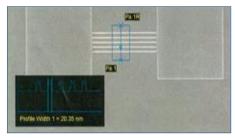

High-resolution negative resists Medusa 82

Etch-stable e-beam resists SX AR-N 8200


Experimental sample/custom-made product

Characterization

- high-resolution e-beam resist (10 nm)
- etch-stable resist structures available in two film thicknesses
- comparable to HSQ, but higher process stability, easier to remove, considerably higher shelf life
- sensitivity is increased by a factor of 20 if an additional tempering step is applied
- silsesquioxane dissolved in 1-methoxy-2-propanol

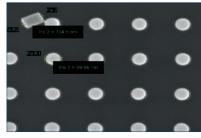
Structure resolution

11 nm structures produced with SX AR-N 8200.03/1

Process parameter

Substrate	Si 4" wafer
Softbake	150 °C, 10 min, hot plate
Exposure	Raith Pioneer 30 KV
Development	AR 300-44, 90 s, 23 °C

D .			11.1	
Pr	OD	er	tie	24
		0.	0.0	


Parameter SX AR-N	8200.03	8200.06	8200.18
Solids content (%)	3,0	6,0	18,0
Viscosity 25°C (mPas)	2,3	2,5	3,2
Film thickness/4000 rpm (nm)	50	100	400
Resolution (nm)	10	13	20
Contrast	5	5	5
Flash point (°C)		38	
Storage temperature (°C)*		8 - 12	

* Products have a guaranteed shelf life of 6 months from the date of sale if stored correctly and can also be used without guarantee until the date indicated on the label.

Properties II

Glass trans. temperature (°C)	-		
Dielectric constant	-		
Cauchy coefficients	N0	1,461	
	N1	72	
	N2	0	
Plasma etching rates (nm/min)	Ar sputtern		
(1 Pa, 230 W Bias)	O ₂	6	
	CF ₄		
	30 CF ₄	220	
	$+5O_{2}$		

Resist structures

100 nm bars with SX AR-N 8200.06/1

Process chemicals

Developer	AR 300-44
Thinner	AR 600-07
Stopper	DI water
Remover	2n NaOH, BOE

Innovation

Creativity Customer-specific solutions

High-resolution negative resists Medusa 82

Process conditions This diagram shows exemplary process steps for resist SX AR-N 8200. All specifications are guideline values which have to be adapted to own specific conditions. For further information on processing, 🖙 "Detailed instructions for optimum processing of photoresists". For recommendations on waste water treatment and general safety instructions, 🖝 "General product information on Allresist photoresists". SX AR-N 8200.03 SX AR-N 8200.06 SX AR-N 8200.18 Coating 4.000 rpm, 50 nm 4.000 rpm, 100 nm 4.000 rpm, 400 nm Softbake ($\pm 1 \, ^{\circ}C$) 150 °C, 10 min, hot plate Raith Pioneer, acceleration voltage 30 kV E beam exposure Exposure dose (E0): 1300 µC/cm² 2000 µC/cm² To enhance the sensitivity 170 °C, 10 min, Hardbake 1211211 hot plate (optional) $60 \ \mu C/cm^2$ 85 µC/cm² AR 300-44 Development (21-23 °C ± 0,5 °C) Puddle 90 s Rinse DI water, 30 s Customer-specific Plasma etching steps Technologies 2 n NaOH Removing

<u>Note on stability</u>: Liquid Medusa resists are stable for up to 6 months if kept refrigerated at least 8 - 12 °C. Coated substrates can be stored under normal conditions and processed without any loss of sensitivity or resolution even after several weeks. Current studies show that irradiated substrates can be processed even after 21 days without significant loss of sensitivity.