

Protective Coatings AR-PC 500(0)

AR-PC 504, 5040 adhesion-enhanced KOH-resistant resists

Wafer backside protection during front side etchings for the production of deep structures in silicon

Characterisation

- not light-sensitive > 300 nm, no yellow light required
- protection of wafer backside when etching the front side
- offers reliable protection against mechanical damage during handling and transport
- temperature-stable up to 250°C
- PMMA with different molecular weights,
- solvent 504 chlorobenzene; 5040 anisole

Properties I		
	1	1
Parameter / AR-PC	504	5040
Solids content (%)	13	17
Viscosity 25 °C (mPas)	350	550
Film thickness/4000 rpm (µm)	2.2	2.8
Resolution (µm)	-	-
Contrast	-	-
Flash point (°C)		42
Storage temperature (°C)*	10 - 25	

* Products have a guaranteed shelf life of temperatures from the date of sale if stored correctly and can also be used without guarantee until the date indicated on the label.

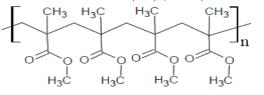
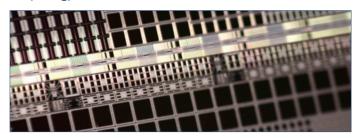

Spin curve

Photo of coated wafer

Protective coating AR-P 503 covering sensitive structures


Structural formula poly(methyl methacrylate)

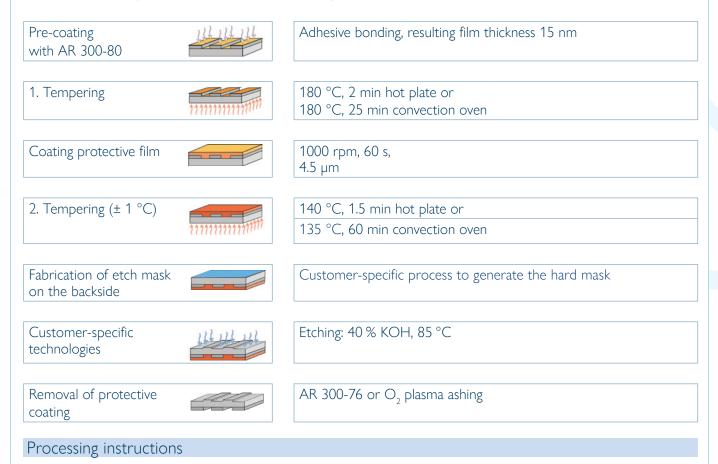
Properties II Glass transition te

Glass transition temperature	105	
Dielectric constant	2.6	
Cauchy coefficients	N ₀	1.528
AR-PC 503	N ₁	34.6
	N ₂	0
Plasma etching rates (nm/min)	Ar-sputtering	20
(5 Pa, 240-250 V Bias)	O ₂	340
	CF ₄	61
	80 CF ₄	160
	+ 16 O ₂	

Topology of the backside

Process chemicals

Adhesion promoter	AR 300-80
Developer	-
Thinner	AR 600-01
Remover	AR 300-76, AR 600-71


Innovation Creativity Customer-specific solutions

Protective Coatings AR-PC 500(0)

Process conditions

This diagram shows exemplary process steps for AR-PC 500(0) resists. All specifications are guideline values which have to be adapted to own specific conditions. For further information on processing, \mathscr{F} "Detailed instructions for optimum processing of photoresists". For recommendations on waste water treatment and general safety instructions, \mathscr{F} "General product information on Allresist photoresists".

<u>Pre-treatment prior to coating</u>: The protective effect during etching can be extended to up to 8 hours if the surface is pre-treated with adhesion promoter AR 300-80. The coating is preferably performed at 4000 rpm. After tempering at 180 °C for 2 min (hot plate), a uniform, 15 nm thin layer of adhesion promoter is formed (-> Product information AR 300-80).

<u>Coating</u>: A rotational speed of 1000 rpm is recommended for protective coatings, since at a film thickness of 2-5 µm wafer edges are best protected due to a certain "edge wrapping" of the resist. At higher spin speeds or if 6-inch wafers and above are used, the relatively high amount of resist which is deposited on the wafer may cause the so-called candy-floss effect. Low spin speeds, local exhaustion or removal of the "candy floss" with a glass rod during coating reduces these highly disturbing effects.

<u>Tempering</u>: To obtain a particularly high protective effect for the fabrication of hard-baked films, tempering temperatures of 190 °C are recommended.

<u>Etch process</u>: The protective coating is even after hours not attacked by 40 % KOH. Possibly occurring problems only derive from insufficient adhesive strength and can be significantly reduced with a pre-treatment with AR 300-80.