

Polyimide Photoresist SX AR-P 5000/82.7

Thermally stable positive resist for plasma/implantation processes

Experimental sample/custom-made product

Characterisation

Photoresists

- i-line, g-line, BB-UV
- very high plasma etching stability, thus well suited for plasma and implantation processes
- thermally stable up to 450 °C
- no curing required
- combination of polyimide and naphthoquinone diazide
- safer solvent PGMEA and N-Ethylpyrrolidon

Properties I

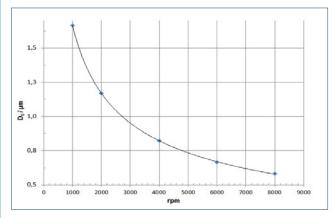
Parameter / SX AR-P	5000/82.7
Solids content (%)	15
Viscosity 25°C (mPas)	25
Film thickness/4000 rpm (µm)	0.8
Resolution (µm)	1.5
Contrast	2
Flash point (°C)	53
Storage temperature (°C)*	8 - 12

* Products have a guaranteed shelf life of 6 Month from the date of sale if stored correctly and can also be used without guarantee until the date indicated on the label.

Properties II

Glass transition temperature °C	170	
Dielectric constant	2.9	
Cauchy coefficients	N ₀	1.609
	N ₁	58.9
	N ₂ :	248.3
Plasma etching rates (nm/min)	Ar-sputte-	5
(5 Pa. 240-250 V Bias)	ring	
	O ₂	199
	CF ₄	41
	80 CF ₄	188
	+ 16 O ₂	

Resist structures



Resist structures at film thickness of 10 µm


Process chemicals

Adhesion promoter	AR 300-80 new
Developer	AR 300-26
Thinner	X AR 300-12/3
Remover	AR 300-76, 300-73

Spin curve

Structure resolution

SX AR-P 5000/82.7 1.5 µm resolution after development of a 0.8 µm film

Process parameters

Substrate	Si 4" wafer
Soft bake	85 °C, 2 min, hot plate
Exposure	Maskaligner MJB 3, contact exposure
Development	AR 300-26, 1 : 2, 90 s, 22 °C

Innovation Creativity Customer-specific solutions

Photoresists

Polyimide Photoresist SX AR-P 5000/82.7

Process conditions This diagram shows exemplary process steps for resist SX AR-P 5000/82.7. All specifications are guideline values which have to be adapted to own specific conditions. For recommendations on waste water treatment and general safety instructions 🗢 "General product information on Allresist photoresists". Pre-coating with Adhesive bonding, resulting film thickness 15 nm AR 300-80 180 °C, 2 min hot plate or 1. Soft bake ************* 180 °C, 25 min convection oven Coating with 4000 rpm, 60 s , 0.8 µm SX AR-P 5000/82.7 2. Soft bake (± 1 °C) 95 °C, 2 min hot plate or 11111111111111 85 °C, 30 min convection oven UV exposure g-line Stepper (Broadband UV, 365 nm) Exposure dose (E_n, BB-UV stepper): 200 mJ/cm², 1.6 µm Development AR 300-26, 1 : 2 11211211 (21-23 °C ± 0.5 °C) puddle 2 min Rinse DI-H₂O, 30 s Post-bake Up to 170 °C, 1 min hot plate (removal just still possible) (up to 300 °C possible, but no removal any more) Customer-specific Generation of e.g. semi-conductor properties technologies Removal AR 300-76 or O₂ plasma ashing

Processing instructions

The addition of the photosensitive component generates a photo-structurable polyimide. The first tempering step (softbake) may thus not be performed at temperatures above 100 °C.